LSTM Self-Supervision for Detailed Behavior Analysis
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Abstract

Behavior analysis provides a crucial non-invasive and
easily accessible diagnostic tool for biomedical research. A
detailed analysis of posture changes during skilled motor
tasks can reveal distinct functional deficits and their restora-
tion during recovery. Our specific scenario is based on
a neuroscientific study of rodents recovering from a large
sensorimotor cortex stroke (the second leading source of
disability worldwide) and skilled forelimb grasping is be-
ing recorded. Videos of behavior recorded during long-
term studies on the recovery after neurological diseases pro-
vide an easily available, rich source of information to evalu-
ate and adjust drug application and rehabilitative paradigm.
The main bottleneck is presently that all analysis of skilled
motor function depends on time-intensive, error-prone, and
costly manual evaluation of behavior, e.g. by aggregating a
large set of subtle characteristics of limb posture and its de-
formation over time [1]. Consequently, this detailed behav-
ior representation required for studying skilled motor func-
tions goes far beyond a trajectory analysis [8] which does
not suffice to capture impairment of behavior. Thus, there is
a dire need for an automatic evaluation of subtle differences
in behavior and the underlying postures without costly man-
ual supervision. The only available information for training
are videos recorded before and after stroke, where even the
healthy animals show a substantial number of failed grasps
due to the complexity of the task. Therefore, we utilize self-
supervision to automatically learn accurate posture and be-
havior representations for analyzing motor function. Learn-
ing our model depends on the following fundamental el-
ements: (i) limb detection based on a fully convolutional
network is initialized solely using motion information, (ii) a
novel self-supervised training of LSTMs using only tempo-
ral permutation yields a detailed representation of behavior,
and (iii) back-propagation of this sequence representation
also improves the description of individual postures. Given
weak initial candidate detections of grasping paws obtained
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using motion information [10], a CNN is trained to separate
paws from clutter. Unrolling the fully convolutional lay-
ers of this model, we obtain a fully convolutional network
(FCN [15]) for detecting paws. Moreover, due to the ab-
sence of posture annotations we will also utilize this CNN
model as an implicitly learned, initial representation of pos-
ture. To further improve this representation we move from
posture to behavior sequences. Therefore, the CNN for in-
dividual postures is directly linked to a recurrent network
(LSTM) for behavior, indirectly optimizing the posture rep-
resentation using the surrogate task of behavior learning
through sequence ordering. Although this task of train-
ing an LSTM on original sequences against permuted ones
sounds more difficult, we can now tap the large amounts of
unlabeled videos by self-supervision. Bootstrap retraining
then improves detections which in turn enhance the learning
of behavior and as a result the individual posture represen-
tation, cf. Fig 1. Finally, we use multiple instance learning
(MIL)[2, 3] to train a classifier to discover the subtle dif-
ferences between healthy and impaired grasping behavior.
We establish a novel test dataset with expert annotations for
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Figure 1: Overview of our self-supervised approach for
posture and sequence representation learning using CNN-
LSTM. After the initial training with motion-based detec-
tions we retrain our model for enhancing the learning of the
representations.



evaluation of fine-grained behavior analysis. Our approach
compares favorably against expert manual evaluation of be-
havior that has been established in neuroscience. We mea-
sure the agreement between the manual annotations and our
results using the p-value of the two-tailed t-statistic of a lin-
ear regression (null hypothesis is that our results does not
predict the expert scores). We obtain a mean p-value of
0.01 indicating that the null hypothesis can be safely re-
jected. Moreover, we demonstrate the generality of our ap-
proach by successfully applying it to self-supervised learn-
ing of human posture on two standard benchmark datasets,
cf. Table 1 and 2.

HOG- | Ex. Ex. | Alex | Clique

Category LDA | SVM | CNN | net CNN | Ours
[6] (1] ] 51 | [9] 4]

Basketball 0.51 0.63 | 0.58 | 0.55 | 0.70 | 0.75

Bowling 057 | 0.63 | 0.58 | 0.55 | 0.85 | 0.87

Clean&Jerk 0.61 0.71 | 0.58 | 0.62 | 0.81 | 0.85
Discus Thr. 0.42 0.76 | 0.56 | 0.59 | 0.65 | 0.68
Diving 10m 042 | 054 | 051 | 057 | 0.70 | 0.76
Diving 3m 0.50 | 0.57 | 0.52 | 0.66 | 0.76 | 0.84
HammerThr. 0.62 064 | 051 | 0.66 | 0.82 | 0.88
High Jump 064 | 076 | 059 | 0.62 | 0.82 | 0.87
Javelin Thr. 0.71 072 | 0.57 | 0.74 | 0.85 | 0.85
Long Jump 0.60 | 0.69 | 0.57 | 0.71 | 0.78 | 0.85

Pole Vault 0.59 0.64 | 0.60 | 0.64 | 0.81 | 0.83
Shot Put 0.51 0.67 | 052 | 0.70 | 0.75 | 0.76
Snatch 0.64 | 0.76 | 0.59 | 0.67 | 0.84 | 0.89

TennisServe 0.70 0.75 | 0.64 | 0.71 | 0.84 | 0.87
Triple Jump 0.63 0.65 | 0.58 | 0.65 | 0.80 | 0.83
Vault 0.59 0.71 | 0.63 | 0.68 | 0.81 | 0.86

Mean 0.58 0.67 | 056 | 0.65 | 0.79 | 0.83

Table 1: Average AUC of all categories of the Olympic
Sports dataset [12] using the state-of-the-art and our ap-
proach.

HOG| Alex | Clique Pose Deep
Parts LDA | net CNN | Ours || Machines| Cut

(61 | [°] [4] [14] [13]

Torso 73.7 | 76.9 | 80.1 | 82.4 88.1 96.0
Ulegs || 41.8 | 47.8 | 50.1 | 53.3 79.0 91.0
Llegs || 39.2 | 41.8 | 45.7 | 48.0 73.6 83.5
Uarms || 23.2 | 26.7 | 27.2 | 30.9 62.8 82.8
Larms || 10.3 | 11.2 12.6 | 16.0 39.5 71.8
Head || 422 | 424 | 455 | 48.9 80.4 96.2
Mean || 384 | 41.1 | 435 | 46.6 67.8 85.0

Table 2: PCP measure (observer-centric) of the Leeds Sport
dataset [7] using our, state-of-the-art and two fully super-
vised approaches.
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