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Abstract

Behavior analysis provides a crucial non-invasive and
easily accessible diagnostic tool for biomedical research. A
detailed analysis of posture changes during skilled motor
tasks can reveal distinct functional deficits and their restora-
tion during recovery. Our specific scenario is based on
a neuroscientific study of rodents recovering from a large
sensorimotor cortex stroke (the second leading source of
disability worldwide) and skilled forelimb grasping is be-
ing recorded. Videos of behavior recorded during long-
term studies on the recovery after neurological diseases pro-
vide an easily available, rich source of information to evalu-
ate and adjust drug application and rehabilitative paradigm.
The main bottleneck is presently that all analysis of skilled
motor function depends on time-intensive, error-prone, and
costly manual evaluation of behavior, e.g. by aggregating a
large set of subtle characteristics of limb posture and its de-
formation over time [1]. Consequently, this detailed behav-
ior representation required for studying skilled motor func-
tions goes far beyond a trajectory analysis [8] which does
not suffice to capture impairment of behavior. Thus, there is
a dire need for an automatic evaluation of subtle differences
in behavior and the underlying postures without costly man-
ual supervision. The only available information for training
are videos recorded before and after stroke, where even the
healthy animals show a substantial number of failed grasps
due to the complexity of the task. Therefore, we utilize self-
supervision to automatically learn accurate posture and be-
havior representations for analyzing motor function. Learn-
ing our model depends on the following fundamental el-
ements: (i) limb detection based on a fully convolutional
network is initialized solely using motion information, (ii) a
novel self-supervised training of LSTMs using only tempo-
ral permutation yields a detailed representation of behavior,
and (iii) back-propagation of this sequence representation
also improves the description of individual postures. Given
weak initial candidate detections of grasping paws obtained
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using motion information [10], a CNN is trained to separate
paws from clutter. Unrolling the fully convolutional lay-
ers of this model, we obtain a fully convolutional network
(FCN [15]) for detecting paws. Moreover, due to the ab-
sence of posture annotations we will also utilize this CNN
model as an implicitly learned, initial representation of pos-
ture. To further improve this representation we move from
posture to behavior sequences. Therefore, the CNN for in-
dividual postures is directly linked to a recurrent network
(LSTM) for behavior, indirectly optimizing the posture rep-
resentation using the surrogate task of behavior learning
through sequence ordering. Although this task of train-
ing an LSTM on original sequences against permuted ones
sounds more difficult, we can now tap the large amounts of
unlabeled videos by self-supervision. Bootstrap retraining
then improves detections which in turn enhance the learning
of behavior and as a result the individual posture represen-
tation, cf. Fig 1. Finally, we use multiple instance learning
(MIL)[2, 3] to train a classifier to discover the subtle dif-
ferences between healthy and impaired grasping behavior.
We establish a novel test dataset with expert annotations for

Figure 1: Overview of our self-supervised approach for
posture and sequence representation learning using CNN-
LSTM. After the initial training with motion-based detec-
tions we retrain our model for enhancing the learning of the
representations.



evaluation of fine-grained behavior analysis. Our approach
compares favorably against expert manual evaluation of be-
havior that has been established in neuroscience. We mea-
sure the agreement between the manual annotations and our
results using the p-value of the two-tailed t-statistic of a lin-
ear regression (null hypothesis is that our results does not
predict the expert scores). We obtain a mean p-value of
0.01 indicating that the null hypothesis can be safely re-
jected. Moreover, we demonstrate the generality of our ap-
proach by successfully applying it to self-supervised learn-
ing of human posture on two standard benchmark datasets,
cf. Table 1 and 2.

Category
HOG-
LDA
[6]

Ex.
SVM
[11]

Ex.
CNN
[5]

Alex
net
[9]

Clique
CNN
[4]

Ours

Basketball 0.51 0.63 0.58 0.55 0.70 0.75
Bowling 0.57 0.63 0.58 0.55 0.85 0.87
Clean&Jerk 0.61 0.71 0.58 0.62 0.81 0.85
Discus Thr. 0.42 0.76 0.56 0.59 0.65 0.68
Diving 10m 0.42 0.54 0.51 0.57 0.70 0.76
Diving 3m 0.50 0.57 0.52 0.66 0.76 0.84
HammerThr. 0.62 0.64 0.51 0.66 0.82 0.88
High Jump 0.64 0.76 0.59 0.62 0.82 0.87
Javelin Thr. 0.71 0.72 0.57 0.74 0.85 0.85
Long Jump 0.60 0.69 0.57 0.71 0.78 0.85
Pole Vault 0.59 0.64 0.60 0.64 0.81 0.83
Shot Put 0.51 0.67 0.52 0.70 0.75 0.76
Snatch 0.64 0.76 0.59 0.67 0.84 0.89
TennisServe 0.70 0.75 0.64 0.71 0.84 0.87
Triple Jump 0.63 0.65 0.58 0.65 0.80 0.83
Vault 0.59 0.71 0.63 0.68 0.81 0.86
Mean 0.58 0.67 0.56 0.65 0.79 0.83

Table 1: Average AUC of all categories of the Olympic
Sports dataset [12] using the state-of-the-art and our ap-
proach.

Parts
HOG
LDA
[6]

Alex
net
[9]

Clique
CNN
[4]

Ours
Pose

Machines
[14]

Deep
Cut
[13]

Torso 73.7 76.9 80.1 82.4 88.1 96.0
U.legs 41.8 47.8 50.1 53.3 79.0 91.0
L.legs 39.2 41.8 45.7 48.0 73.6 83.5
U.arms 23.2 26.7 27.2 30.9 62.8 82.8
L.arms 10.3 11.2 12.6 16.0 39.5 71.8
Head 42.2 42.4 45.5 48.9 80.4 96.2
Mean 38.4 41.1 43.5 46.6 67.8 85.0

Table 2: PCP measure (observer-centric) of the Leeds Sport
dataset [7] using our, state-of-the-art and two fully super-
vised approaches.
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